An Efficient Symbiotic Particle Swarm Optimization for Recurrent Func- tional Neural Fuzzy Network Design
نویسندگان
چکیده
In this paper, a recurrent functional neural fuzzy network (RFNFN) with symbiotic particle swarm optimization (SPSO) is proposed for solving identification and prediction problems. The proposed RFNFN model has feedback connections added in the membership function layer that can solve temporal problems. Moreover, an efficient learning algorithm, called symbiotic particle swarm optimization (SPSO), combined symbiotic evolution and modified particle swarm optimization for tuning parameters of the RFNFN. Simulation results show that the converging speed and root mean square error (RMS) of the proposed method has a better performance than those of other methods.
منابع مشابه
Neuro-Optimizer: A New Artificial Intelligent Optimization Tool and Its Application for Robot Optimal Controller Design
The main objective of this paper is to introduce a new intelligent optimization technique that uses a predictioncorrectionstrategy supported by a recurrent neural network for finding a near optimal solution of a givenobjective function. Recently there have been attempts for using artificial neural networks (ANNs) in optimizationproblems and some types of ANNs such as Hopfield network and Boltzm...
متن کاملOptimal Rotor Fault Detection in Induction Motor Using Particle-Swarm Optimization Optimized Neural Network
This study examined and presents an effective method for detection of failure of conductor bars in the winding of rotor of induction motor in low load conditions using neural networks of radial-base functions. The proposed method used Hilbert method to obtain the stator current signal push. The frequency and signal amplitude of the push stator were used as the input of the neural network and th...
متن کاملTraffic Signal Prediction Using Elman Neural Network and Particle Swarm Optimization
Prediction of traffic is very crucial for its management. Because of human involvement in the generation of this phenomenon, traffic signal is normally accompanied by noise and high levels of non-stationarity. Therefore, traffic signal prediction as one of the important subjects of study has attracted researchers’ interests. In this study, a combinatorial approach is proposed for traffic signal...
متن کاملA Particle Swarm Optimization Approach for Training Artificial Neural Networks with Uncertain Data
Abstract. Artificial neural networks are powerful tools to learn functional relationships between data. They are widely used in engineering applications. Recurrent neural networks for fuzzy data have been introduced to map uncertain structural processes with deterministic or uncertain network parameters. Based on swarm intelligence, a new training strategy for neural networks is presented in th...
متن کاملAn efficient approach for availability analysis through fuzzy differential equations and particle swarm optimization
This article formulates a new technique for behavior analysis of systems through fuzzy Kolmogorov's differential equations and Particle Swarm Optimization. For handling the uncertainty in data, differential equations have been formulated by Markov modeling of system in fuzzy environment. First solution of these derived fuzzy Kolmogorov's differential equations has been found by Runge-Kutta four...
متن کامل